Characterizing C*-algebras of Compact Operators by Generic Categorical Properties of Hilbert C*-modules

نویسنده

  • MICHAEL FRANK
چکیده

B. Magajna and J. Schweizer showed in 1997 and 1999, respectively, that C*-algebras of compact operators can be characterized by the property that every norm-closed (and coinciding with its biorthogonal complement, resp.) submodule of every Hilbert C*-module over them is automatically an orthogonal summand. We find out further generic properties of the category of Hilbert C*-modules over C*-algebras which characterize precisely the C*-algebras of compact operators. In 1997 B. Magajna obtained the equivalence of the property of the category of Hilbert C*-modules over a certain C*-algebra A that any Hilbert C*-submodule is automatically an orthogonal summand with the property of the C*-algebra A of coefficients to admit a faithful ∗-representation in some C*-algebra of compact operators on some Hilbert space, cf. Theorem 2.1. In 1999 J. Schweizer was able to sharpen the argument replacing the Hilbert C*-module property of B. Magajna by the property of the category of Hilbert C*-modules over a certain C*-algebra A that any Hilbert C*-submodule which coincides with its biorthogonal complement is automatically an orthogonal summand, cf. Theorem 2.1. Later on in 2003 M. Kusuda published further results which indicate that in the majority of situations the Hilbert C*-module property can be weakened merely requiring the KA(M)-Asubbimodules of the Hilbert C*-modules M to be always orthogonal summands, see [11, 12] for the details. Studying the work of B. Magajna and J. Schweizer C*-algebras A of the form A = c0∑ α⊕K(Hα) become of special interest, where the symbol K(Hα) denotes the C*-algebra of all compact operators on some Hilbert space Hi, and the c0-sum is either a finite block-diagonal sum or a block-diagonal sum with a c0-convergence condition on the C*-algebra 1991 Mathematics Subject Classification. Primary 46L08 ; Secondary 46H25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

Frames in right ideals of $C^*$-algebras

we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.

متن کامل

*-frames in Hilbert modules over pro-C*-algebras

‎In this paper‎, ‎by using the sequence of multipliers‎, ‎we introduce frames with algebraic bounds in Hilbert pro-$ C^* $-modules‎. ‎We investigate the relations between frames and $ ast $-frames‎. ‎Some properties of $ ast $-frames in Hilbert pro-$ C^* $-modules are studied‎. ‎Also‎, ‎we show that there exist two differences between $ ast $-frames in Hilbert pro-$ C^* $-modules and Hilbert $ ...

متن کامل

The Atkinson Theorem in Hilbert C-modules over C-algebras of Compact Operators

In this paper the concept of unbounded Fredholm operators on Hilbert C∗modules over an arbitrary C∗-algebra is discussed and the Atkinson theorem is generalized for bounded and unbounded Feredholm operators on Hilbert C∗-modules over C∗-algebras of compact operators. In the framework of Hilbert C∗-modules over C∗-algebras of compact operators, the index of an unbounded Fredholm operator and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006